Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.379
Filtrar
1.
Cell ; 187(8): 1889-1906.e24, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38503281

RESUMO

Nucleoli are multicomponent condensates defined by coexisting sub-phases. We identified distinct intrinsically disordered regions (IDRs), including acidic (D/E) tracts and K-blocks interspersed by E-rich regions, as defining features of nucleolar proteins. We show that the localization preferences of nucleolar proteins are determined by their IDRs and the types of RNA or DNA binding domains they encompass. In vitro reconstitutions and studies in cells showed how condensation, which combines binding and complex coacervation of nucleolar components, contributes to nucleolar organization. D/E tracts of nucleolar proteins contribute to lowering the pH of co-condensates formed with nucleolar RNAs in vitro. In cells, this sets up a pH gradient between nucleoli and the nucleoplasm. By contrast, juxta-nucleolar bodies, which have different macromolecular compositions, featuring protein IDRs with very different charge profiles, have pH values that are equivalent to or higher than the nucleoplasm. Our findings show that distinct compositional specificities generate distinct physicochemical properties for condensates.


Assuntos
Nucléolo Celular , Proteínas Nucleares , Força Próton-Motriz , Nucléolo Celular/química , Núcleo Celular/química , Proteínas Nucleares/química , RNA/metabolismo , 60422 , Proteínas Intrinsicamente Desordenadas/química , Animais , Xenopus laevis , Oócitos/química , Oócitos/citologia
2.
Dev Cell ; 59(8): 1058-1074.e11, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38460509

RESUMO

During oocyte maturation and early embryogenesis, changes in mRNA poly(A)-tail lengths strongly influence translation, but how these tail-length changes are orchestrated has been unclear. Here, we performed tail-length and translational profiling of mRNA reporter libraries (each with millions of 3' UTR sequence variants) in frog oocytes and embryos and in fish embryos. Contrasting to previously proposed cytoplasmic polyadenylation elements (CPEs), we found that a shorter element, UUUUA, together with the polyadenylation signal (PAS), specify cytoplasmic polyadenylation, and we identified contextual features that modulate the activity of both elements. In maturing oocytes, this tail lengthening occurs against a backdrop of global deadenylation and the action of C-rich elements that specify tail-length-independent translational repression. In embryos, cytoplasmic polyadenylation becomes more permissive, and additional elements specify waves of stage-specific deadenylation. Together, these findings largely explain the complex tapestry of tail-length changes observed in early frog and fish development, with strong evidence of conservation in both mice and humans.


Assuntos
Regiões 3' não Traduzidas , Oócitos , Poli A , Poliadenilação , Biossíntese de Proteínas , RNA Mensageiro , Animais , Oócitos/metabolismo , Oócitos/citologia , Poli A/metabolismo , Poli A/genética , Regiões 3' não Traduzidas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Humanos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Xenopus laevis/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética , Citoplasma/metabolismo
3.
Cell ; 187(5): 1109-1126.e21, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38382525

RESUMO

Oocytes are among the longest-lived cells in the body and need to preserve their cytoplasm to support proper embryonic development. Protein aggregation is a major threat for intracellular homeostasis in long-lived cells. How oocytes cope with protein aggregation during their extended life is unknown. Here, we find that mouse oocytes accumulate protein aggregates in specialized compartments that we named endolysosomal vesicular assemblies (ELVAs). Combining live-cell imaging, electron microscopy, and proteomics, we found that ELVAs are non-membrane-bound compartments composed of endolysosomes, autophagosomes, and proteasomes held together by a protein matrix formed by RUFY1. Functional assays revealed that in immature oocytes, ELVAs sequester aggregated proteins, including TDP-43, and degrade them upon oocyte maturation. Inhibiting degradative activity in ELVAs leads to the accumulation of protein aggregates in the embryo and is detrimental for embryo survival. Thus, ELVAs represent a strategy to safeguard protein homeostasis in long-lived cells.


Assuntos
Vesículas Citoplasmáticas , Oócitos , Agregados Proteicos , Animais , Feminino , Camundongos , Autofagossomos , Vesículas Citoplasmáticas/metabolismo , Lisossomos/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Complexo de Endopeptidases do Proteassoma , Proteólise
4.
FASEB J ; 38(2): e23435, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38243686

RESUMO

As a histone acetyltransferase, lysine acetyltransferase 8 (KAT8) participates in diverse biological processes. However, the effect of KAT8 on oocyte maturation in mice remains unclear. In this study, we found that mouse oocytes overexpressing Kat8-OE induced maturation failure manifested reduced rates of GVBD and first polar body emission. In addition, immunostaining results revealed that Kat8 overexpressing oocytes showed inappropriate mitochondrial distribution patterns, overproduction of reactive oxygen species (ROS), accumulation of phosphorylated γH2AX, hyperacetylation of α-tubulin, and severely disrupted spindle/chromosome organization. Moreover, we revealed that Kat8 overexpression induced a decline in SOD1 proteins and KAT8's interaction with SOD1 in mouse ovaries via immunoprecipitation. Western blotting data confirmed that Kat8-OE induced downregulation of SOD1 expression, which is a key factor for the decline of oocyte quality in advanced maternal age. Also, the injection of Myc-Sod1 cRNA could partially rescue maternal age-induced meiotic defects in oocytes. In conclusion, our data demonstrated that high level of KAT8 inhibited SOD1 activity, which in turn induced defects of mitochondrial dynamics, imbalance of redox homeostasis, and spindle/chromosome disorganization during mouse oocyte maturation.


Assuntos
Histona Acetiltransferases , Meiose , Dinâmica Mitocondrial , Oócitos , Animais , Camundongos , Histona Acetiltransferases/metabolismo , Homeostase , Oócitos/citologia , Oócitos/metabolismo , Oxirredução , Fuso Acromático/metabolismo , Superóxido Dismutase-1/genética
5.
Nucleic Acids Res ; 51(22): 12076-12091, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950888

RESUMO

Translation is critical for development as transcription in the oocyte and early embryo is silenced. To illustrate the translational changes during meiosis and consecutive two mitoses of the oocyte and early embryo, we performed a genome-wide translatome analysis. Acquired data showed significant and uniform activation of key translational initiation and elongation axes specific to M-phases. Although global protein synthesis decreases in M-phases, translation initiation and elongation activity increases in a uniformly fluctuating manner, leading to qualitative changes in translation regulation via the mTOR1/4F/eEF2 axis. Overall, we have uncovered a highly dynamic and oscillatory pattern of translational reprogramming that contributes to the translational regulation of specific mRNAs with different modes of polysomal occupancy/translation that are important for oocyte and embryo developmental competence. Our results provide new insights into the regulation of gene expression during oocyte meiosis as well as the first two embryonic mitoses and show how temporal translation can be optimized. This study is the first step towards a comprehensive analysis of the molecular mechanisms that not only control translation during early development, but also regulate translation-related networks employed in the oocyte-to-embryo transition and embryonic genome activation.


Assuntos
Desenvolvimento Embrionário , Oócitos , Biossíntese de Proteínas , Regulação da Expressão Gênica no Desenvolvimento , Meiose , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Camundongos
6.
Elife ; 122023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37334967

RESUMO

Human oocyte maturation arrest represents one of the severe conditions for female patients with primary infertility. However, the genetic factors underlying this human disease remain largely unknown. The spindle assembly checkpoint (SAC) is an intricate surveillance mechanism that ensures accurate segregation of chromosomes throughout cell cycles. Once the kinetochores of chromosomes are correctly attached to bipolar spindles and the SAC is satisfied, the MAD2L1BP, best known as p31comet, binds mitosis arrest deficient 2 (MAD2) and recruits the AAA+-ATPase TRIP13 to disassemble the mitotic checkpoint complex (MCC), leading to the cell-cycle progression. In this study, by whole-exome sequencing (WES), we identified homozygous and compound heterozygous MAD2L1BP variants in three families with female patients diagnosed with primary infertility owing to oocyte metaphase I (MI) arrest. Functional studies revealed that the protein variants resulting from the C-terminal truncation of MAD2L1BP lost their binding ability to MAD2. cRNA microinjection of full-length or truncated MAD2L1BP uncovered their discordant roles in driving the extrusion of polar body 1 (PB1) in mouse oocytes. Furthermore, the patient's oocytes carrying the mutated MAD2L1BP resumed polar body extrusion (PBE) when rescued by microinjection of full-length MAD2L1BP cRNAs. Together, our studies identified and characterized novel biallelic variants in MAD2L1BP responsible for human oocyte maturation arrest at MI, and thus prompted new therapeutic avenues for curing female primary infertility.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Infertilidade Feminina , Proteínas Nucleares , Animais , Feminino , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Sequenciamento do Exoma , Infertilidade Feminina/genética , Proteínas Mad2 , Proteínas Nucleares/genética , Oócitos/citologia , Adulto Jovem , Adulto , Meiose
7.
Zygote ; 31(5): 411-419, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37337712

RESUMO

MicroRNAs (miRNAs) are small non-encoding RNAs that actively regulate biological and physiological processes, and play an important role in regulating gene expression in all cells, especially in most animal cells, including oocytes and embryos. The expression of miRNAs at the right time and place is crucial for the oocyte's maturation and the embryo's subsequent development. Although assisted reproductive techniques (ART) have helped to solve many infertility problems, they cause changes in the expression of miRNA and genes in oocytes and preimplantation embryos, and the effect of these changes on the future of offspring is unknown, and has caused concerns. The relevant genomic alterations commonly imposed on embryos during cryopreservation may have potential epigenetic risks. Understanding the biological functions of miRNAs in frozen maturated oocytes may provide a better understanding of embryonic development and a comparison of fertility conservation in female mammals. With the development of new techniques for genomic evaluation of preimplantation embryos, it has been possible to better understand the effects of ART. The results of various articles have shown that freezing of oocytes and the cryopreservation method are effective for the expression of miRNAs and, in some cases, cause changes in the expression of miRNAs and epigenetic changes in the resulting embryo. This literature review study aimed to investigate the effects of oocyte cryopreservation in both pre-maturation and post-maturation stages, the cryopreservation method and the type of cryoprotectants (CPA) used on the expression of some epigenetic-related genes and miRNAs.


Assuntos
Criopreservação , MicroRNAs , Oócitos , Oócitos/citologia , Oócitos/efeitos dos fármacos , MicroRNAs/química , Técnicas Reprodutivas , Crioprotetores/farmacologia , Epigenômica , Humanos , Animais
8.
J Biol Chem ; 299(8): 104950, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37354972

RESUMO

Xenopus oocytes are encompassed by a layer of follicular cells that contribute to oocyte growth and meiosis in relation to oocyte maturation. However, the effects of the interaction between follicular cells and the oocyte surface on meiotic processes are unclear. Here, we investigated Xenopus follicular cell function using oocyte signaling and heterologous-expressing capabilities. We found that oocytes deprotected from their surrounding layer of follicular cells and expressing the epidermal growth factor (EGF) receptor (EGFR) and the Grb7 adaptor undergo accelerated prophase I to metaphase II meiosis progression upon stimulation by EGF. This unusual maturation unravels atypical spindle formation but is rescued by inhibiting integrin ß1 or Grb7 binding to the EGFR. In addition, we determined that oocytes surrounded by their follicular cells expressing EGFR-Grb7 exhibit normal meiotic resumption. These oocytes are protected from abnormal meiotic spindle formation through the recruitment of O-GlcNAcylated Grb7, and OGT (O-GlcNAc transferase), the enzyme responsible for O-GlcNAcylation processes, in the integrin ß1-EGFR complex. Folliculated oocytes can be forced to adopt an abnormal phenotype and exclusive Grb7 Y338 and Y188 phosphorylation instead of O-GlcNAcylation under integrin activation. Furthermore, an O-GlcNAcylation increase (by inhibition of O-GlcNAcase), the glycosidase that removes O-GlcNAc moieties, or decrease (by inhibition of OGT) amplifies oocyte spindle defects when follicular cells are absent highlighting a control of the meiotic spindle by the OGT-O-GlcNAcase duo. In summary, our study provides further insight into the role of the follicular cell layer in oocyte meiosis progression.


Assuntos
Fator de Crescimento Epidérmico , Integrina beta1 , Oócitos , Xenopus laevis , Animais , Acilação , Regulação para Baixo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Proteína Adaptadora GRB7/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Meiose , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Fuso Acromático/metabolismo , Xenopus laevis/metabolismo
9.
J Assist Reprod Genet ; 40(5): 1197-1213, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37012451

RESUMO

INTRODUCTION: Morphokinetic analysis using a closed time-lapse monitoring system (EmbryoScope + ™) provides quantitative metrics of meiotic progression and cumulus expansion. The goal of this study was to use a physiologic aging mouse model, in which egg aneuploidy levels increase, to determine whether there are age-dependent differences in morphokinetic parameters of oocyte maturation. METHODS: Denuded oocytes and intact cumulus-oocyte complexes (COCs) were isolated from reproductively young and old mice and in vitro matured in the EmbryoScope + ™. Morphokinetic parameters of meiotic progression and cumulus expansion were evaluated, compared between reproductively young and old mice, and correlated with egg ploidy status. RESULTS: Oocytes from reproductively old mice were smaller than young counterparts in terms of GV area (446.42 ± 4.15 vs. 416.79 ± 5.24 µm2, p < 0.0001) and oocyte area (4195.71 ± 33.10 vs. 4081.62 ± 41.04 µm2, p < 0.05). In addition, the aneuploidy incidence was higher in eggs with advanced reproductive age (24-27% vs. 8-9%, p < 0.05). There were no differences in the morphokinetic parameters of oocyte maturation between oocytes from reproductively young and old mice with respect to time to germinal vesicle breakdown (GVBD) (1.03 ± 0.03 vs. 1.01 ± 0.04 h), polar body extrusion (PBE) (8.56 ± 0.11 vs. 8.52 ± 0.15 h), duration of meiosis I (7.58 ± 0.10 vs. 7.48 ± 0.11 h), and kinetics of cumulus expansion (0.093 ± 0.002 vs. 0.089 ± 0.003 µm/min). All morphokinetic parameters of oocyte maturation were similar between euploid and aneuploid eggs irrespective of age. CONCLUSION: There is no association between age or ploidy and the morphokinetics of mouse oocyte in vitro maturation (IVM). Future studies are needed to evaluate whether there is an association between morphokinetic dynamics of mouse IVM and embryo developmental competence.


Assuntos
Envelhecimento , Meiose , Oócitos , Animais , Camundongos , Ploidias , Feminino , Oócitos/citologia , Imagem com Lapso de Tempo , Cinética
10.
Cell Prolif ; 56(2): e13359, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36354207

RESUMO

The anaphase promoting complex/cyclosome (APC/C) and its cofactors CDH1 and CDC20 regulate the accumulation/degradation of CCNB1 during mouse oocyte meiotic maturation. Generally, the CCNB1 degradation mediated by APC/CCDC20 activity is essential for the transition from metaphase to anaphase. Here, by using siRNA and mRNA microinjection, as well as time-lapse live imaging, we showed that Septin 9, which mediates the binding of septins to microtubules, is critical for oocyte meiotic cell cycle progression. The oocytes were arrested at the MI stage and the connection between chromosome kinetochores and spindle microtubules was disrupted after Septin 9 depletion. As it is well known that spindle assembly checkpoint (SAC) is an important regulator of the MI-AI transition, we thus detected the SAC activity and the expression of CDC20 and CCNB1 which were the downstream proteins of SAC during this critical period. The signals of Mad1 and BubR1 still remained on the kinetochores of chromosomes in Septin 9 siRNA oocytes at 9.5 h of in vitro culture when most control oocytes entered anaphase I. The expression of CCNB1 did not decrease and the expression of CDC20 did not increase at 9.5 h in Septin 9 siRNA oocytes. Microinjection of mRNA encoding Septin 9 or CDC20 could partially rescue MI arrest caused by Septin 9 siRNA. These results suggest that Septin 9 is required for meiotic MI-AI transition by regulating the kinetochore-microtubule connection and SAC protein localization on kinetochores, whose effects are transmitted to APC/CCDC20 activity and CCNB1 degradation in mouse oocytes.


Assuntos
Ciclo Celular , Oócitos , Septinas , Animais , Camundongos , Anáfase , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Metáfase , Oócitos/citologia , Oócitos/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Septinas/genética , Septinas/metabolismo
11.
J Cell Biol ; 221(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36264230

RESUMO

Elvan Böke investigates the mechanisms that preserve the viability of dormant oocytes.


Assuntos
Sobrevivência Celular , Oócitos , Oócitos/citologia
12.
Nature ; 607(7920): 756-761, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859172

RESUMO

Oocytes form before birth and remain viable for several decades before fertilization1. Although poor oocyte quality accounts for most female fertility problems, little is known about how oocytes maintain cellular fitness, or why their quality eventually declines with age2. Reactive oxygen species (ROS) produced as by-products of mitochondrial activity are associated with lower rates of fertilization and embryo survival3-5. Yet, how healthy oocytes balance essential mitochondrial activity with the production of ROS is unknown. Here we show that oocytes evade ROS by remodelling the mitochondrial electron transport chain through elimination of complex I. Combining live-cell imaging and proteomics in human and Xenopus oocytes, we find that early oocytes exhibit greatly reduced levels of complex I. This is accompanied by a highly active mitochondrial unfolded protein response, which is indicative of an imbalanced electron transport chain. Biochemical and functional assays confirm that complex I is neither assembled nor active in early oocytes. Thus, we report a physiological cell type without complex I in animals. Our findings also clarify why patients with complex-I-related hereditary mitochondrial diseases do not experience subfertility. Complex I suppression represents an evolutionarily conserved strategy that allows longevity while maintaining biological activity in long-lived oocytes.


Assuntos
Complexo I de Transporte de Elétrons , Mitocôndrias , Oócitos , Espécies Reativas de Oxigênio , Animais , Transporte de Elétrons , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Humanos , Mitocôndrias/metabolismo , Oócitos/citologia , Oócitos/enzimologia , Oócitos/metabolismo , Proteômica , Resposta a Proteínas não Dobradas , Xenopus laevis
13.
Cell ; 185(14): 2576-2590.e12, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623357

RESUMO

Mouse germline cysts, on average, develop into six oocytes supported by 24 nurse cells that transfer cytoplasm and organelles to generate a Balbiani body. We showed that between E14.5 and P5, cysts periodically activate some nurse cells to begin cytoplasmic transfer, which causes them to shrink and turnover within 2 days. Nurse cells die by a programmed cell death (PCD) pathway involving acidification, similar to Drosophila nurse cells, and only infrequently by apoptosis. Prior to initiating transfer, nurse cells co-cluster by scRNA-seq with their pro-oocyte sisters, but during their final 2 days, they cluster separately. The genes promoting oocyte development and nurse cell PCD are upregulated, whereas the genes that repress transfer, such as Tex14, and oocyte factors, such as Nobox and Lhx8, are under-expressed. The transferred nurse cell centrosomes build a cytocentrum that establishes a large microtubule aster in the primordial oocyte that organizes the Balbiani body, defining the earliest oocyte polarity.


Assuntos
Linhagem da Célula , Cistos , Oócitos , Animais , Apoptose , Crescimento Celular , Cistos/genética , Cistos/metabolismo , Citoplasma/metabolismo , Drosophila melanogaster , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Oócitos/citologia , Oócitos/metabolismo , Ovário/citologia , Ovário/embriologia , Ovário/metabolismo
14.
Nucleic Acids Res ; 50(10): 5617-5634, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35580048

RESUMO

Generation of haploid gametes depends on a modified version of homologous recombination in meiosis. Meiotic recombination is initiated by single-stranded DNA (ssDNA) ends originating from programmed DNA double-stranded breaks (DSBs) that are generated by the topoisomerase-related SPO11 enzyme. Meiotic recombination involves chromosomal synapsis, which enhances recombination-mediated DSB repair, and thus, crucially contributes to genome maintenance in meiocytes. Synapsis defects induce oocyte apoptosis ostensibly due to unrepaired DSBs that persist in asynaptic chromosomes. In mice, SPO11-deficient oocytes feature asynapsis, apoptosis and, surprisingly, numerous foci of the ssDNA-binding recombinase RAD51, indicative of DSBs of unknown origin. Hence, asynapsis is suggested to trigger apoptosis due to inefficient DSB repair even in mutants that lack programmed DSBs. By directly detecting ssDNAs, we discovered that RAD51 is an unreliable marker for DSBs in oocytes. Further, SPO11-deficient oocytes have fewer persistent ssDNAs than wild-type oocytes. These observations suggest that oocyte quality is safeguarded in mammals by a synapsis surveillance mechanism that can operate without persistent ssDNAs.


Assuntos
Pareamento Cromossômico , Endodesoxirribonucleases , Oócitos , Animais , Apoptose , Proteínas de Ciclo Celular/metabolismo , DNA , Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Mamíferos/genética , Meiose , Camundongos , Oócitos/citologia , Oócitos/metabolismo , Reparo de DNA por Recombinação
15.
Sci Rep ; 12(1): 2706, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177721

RESUMO

Intracytoplasmic sperm injection (ICSI) is an effective reproductive technique for obtaining rat offspring using preserved sperm with low or no motility. However, rat oocytes undergo spontaneous activation immediately after retrieval from the oviduct and poorly develop after ICSI unless it is performed quickly. Here, we evaluated whether treatment with MG132, the proteasome inhibitor, suppresses the spontaneous activation of oocytes before and during ICSI. After retrieval from the oviducts, the rate of development into morula and blastocyst from the oocytes cultured in vitro for 1 h prior to ICSI significantly decreased compared with that from the control oocytes subject to ICSI without culture (7% versus 36%). However, a higher proportion of oocytes treated with MG132 for 0, 1, and 3 h before and during ICSI developed into morulae and blastocysts (70%, 60%, and 52%, respectively). Offspring were obtained from oocytes treated with MG132 for 0 and 1 h before and during ICSI (percentage: 31%). Altogether, MG132 could suppress the spontaneous activation of rat oocytes and increase embryonic development after ICSI.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Leupeptinas/farmacologia , Leupeptinas/uso terapêutico , Oócitos/efeitos dos fármacos , Injeções de Esperma Intracitoplásmicas/métodos , Animais , Gonadotropina Coriônica/farmacologia , Gonadotropina Coriônica/uso terapêutico , Cromossomos/efeitos dos fármacos , Feminino , Masculino , Oócitos/citologia , Ratos Wistar , Injeções de Esperma Intracitoplásmicas/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Fatores de Tempo
16.
FASEB J ; 36(3): e22210, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35167144

RESUMO

Precise regulation of chromosome separation through spindle assembly checkpoint (SAC) during oocyte meiosis is critical for mammalian reproduction. The kinetochore plays an important role in the regulation of SAC through sensing microtubule tension imbalance or missing microtubule connections. Here, we report that kinetochore scaffold 1 (KNL1, also known as CASC5), an outer kinetochore protein, plays a critical role in the SAC function of mouse oocytes. KNL1 localized at kinetochores from GVBD to the MII stage, and microinjection of KNL1-siRNA caused accelerated metaphase-anaphase transition and premature first meiosis completion, producing aneuploid eggs. The SAC was prematurely silenced in the presence of unstable kinetochore-microtubule attachments and misaligned chromosomes in KNL1-depleted oocytes. Additionally, KNL1 and MPS1 had a synergistic effect on the activation and maintenance of SAC. Taken together, our results suggest that KNL1, as a kinetochore platform protein, stabilizes SAC to ensure timely anaphase entry and accurate chromosome segregation during oocyte meiotic maturation.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Meiose , Proteínas Associadas aos Microtúbulos/metabolismo , Oócitos/metabolismo , Oogênese , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos ICR , Proteínas Associadas aos Microtúbulos/genética , Oócitos/citologia
17.
PLoS One ; 17(2): e0263933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35176082

RESUMO

Tea plant (Camellia sinensis) is one of the most important horticultural cash crops, and tea green leafhopper (Matsumurasca onukii) is an extremely harmful sap-sucking pest of tea plant. Serious generation overlapping, which is mainly caused by the long oviposition period, leads to poor control effect of pesticides on this pest in the tea plantation. But the intuitive evidences of continuous oogenesis and egg-laying of this pest are still lacking, which seriously hindered the development of genetic control methods. Here, we clarified the main structures of the inner reproductive system of tea green leafhopper female adult. Oviposition behaviors were monitored as well, and six oviposition steps were recorded. According to the maturity of oocytes, the maturity stages of the reproductive system under different copulation periods were classified into 4 stages. For female adults at stage IV, mature and immature oocytes were presented simultaneously, and the developmental levels of oocytes were asynchronous among different ovarioles. The proportion of gravid females with mature oocytes significantly increased when the continuous copulation time was prolonged. In sync with the development of the ovary maturity, female adults started to slightly deposit eggs at the 5th day, and then increased dramatically. In addition, we found that, whether mature or immature, oocytes in the ovarioles always emitted green fluorescence under blue light excitation, which in turn provide solid proof for the new egg detection method from the insect physiology point of view.


Assuntos
Hemípteros/fisiologia , Oócitos/citologia , Oogênese , Oviposição , Reprodução , Animais , Feminino
18.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35163635

RESUMO

The oocyte and the surrounding cumulus cells (CCs) are deeply linked by a complex bidirectional cross-talk. In this light, the molecular analysis of the CCs is nowadays considered to be precious in providing information on oocyte quality. It is now clear that miRNAs play a key role in several ovarian functions, such as folliculogenesis, steroidogenesis, and ovulation. Thus, in this study, specific miRNAs, together with their target genes, were selected and investigated in CCs to assess the response of patients with normal (NR) and low (LR) ovarian reserve to two different controlled ovarian stimulation (COS) protocols, based on rFSH and hMG. Moreover, a Fourier transform infrared microspectroscopy (FTIRM) analysis was performed to evaluate DNA conformational changes in CCs and to relate them with the two COS protocols. The results evidenced a modulation of the expression of miRNAs and related target genes involved in CCs' proliferation, in vasculogenesis, angiogenesis, genomic integrity, and oocyte quality, with different effects according to the ovarian reserve of patients. Moreover, the COS protocols determined differences in DNA conformation and the methylation state. In particular, the results clearly showed that treatment with rFSH is the most appropriate in NR patients with normal ovarian reserve, while treatment with hMG appears to be the most suitable in LR patients with low ovarian reserve.


Assuntos
Células do Cúmulo , MicroRNAs/metabolismo , Oócitos , Indução da Ovulação/métodos , Adulto , Estudos de Coortes , Células do Cúmulo/citologia , Células do Cúmulo/metabolismo , Feminino , Humanos , Oócitos/citologia , Oócitos/metabolismo , Reserva Ovariana , Ovulação
19.
Reprod Biol Endocrinol ; 20(1): 37, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35209923

RESUMO

In vitro fertilization (IVF) is currently one of the most effective methods of infertility treatment. An alternative to commonly used ovarian hyperstimulation can become extracorporeal maturation of oocytes (in vitro maturation; IVM). Fertilization and normal development of the embryo depends on the cytoplasmic, nuclear and genomic maturity of the oocyte. The microenvironment of the ovarian follicle and maternal signals, which mediate bidirectional communication between granulosa, cumulus and oocyte cells, influence the growth, maturation and acquisition of oocyte development capability. During oogenesis in mammals, the meiosis is inhibited in the oocyte at the prophase I of the meiotic division due to the high cAMP level. This level is maintained by the activity of C-type natriuretic peptide (CNP, NPPC) produced by granulosa cells. The CNP binds to the NPR2 receptor in cumulus cells and is responsible for the production of cyclic guanosine monophosphate (cGMP). The cGMP penetrating into the oocyte through gap junctions inhibits phosphodiesterase 3A (PDE3A), preventing cAMP hydrolysis responsible for low MPF activity. The LH surge during the reproductive cycle reduces the activity of the CNP/NPR2 complex, which results in a decrease in cGMP levels in cumulus cells and consequently in the oocyte. Reduced cGMP concentration unblocks the hydrolytic activity of PDE3A, which decreases cAMP level inside the oocyte. This leads to the activation of MPF and resumption of meiosis. The latest IVM methods called SPOM, NFSOM or CAPA IVM consist of two steps: prematuration and maturation itself. Taking into account the role of cAMP in inhibiting and then unblocking the maturation of oocytes, they have led to a significant progress in terms of the percentage of mature oocytes in vitro and the proportion of properly developed embryos in both animals and humans.


Assuntos
Oócitos/fisiologia , Oogênese/fisiologia , Animais , Células Cultivadas , Feminino , Humanos , Técnicas de Maturação in Vitro de Oócitos , Mamíferos , Meiose/fisiologia , Oócitos/citologia , Transdução de Sinais/fisiologia
20.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35022236

RESUMO

The fidelity of a signaling pathway depends on its tight regulation in space and time. Extracellular signal-regulated kinase (ERK) controls wide-ranging cellular processes to promote organismal development and tissue homeostasis. ERK activation depends on a reversible dual phosphorylation on the TEY motif in its active site by ERK kinase (MEK) and dephosphorylation by DUSPs (dual specificity phosphatases). LIP-1, a DUSP6/7 homolog, was proposed to function as an ERK (MPK-1) DUSP in the Caenorhabditis elegans germline primarily because of its phenotype, which morphologically mimics that of a RAS/let-60 gain-of-function mutant (i.e., small oocyte phenotype). Our investigations, however, reveal that loss of lip-1 does not lead to an increase in MPK-1 activity in vivo. Instead, we show that loss of lip-1 leads to 1) a decrease in MPK-1 phosphorylation, 2) lower MPK-1 substrate phosphorylation, 3) phenocopy of mpk-1 reduction-of-function (rather than gain-of-function) allele, and 4) a failure to rescue mpk-1-dependent germline or fertility defects. Moreover, using diverse genetic mutants, we show that the small oocyte phenotype does not correlate with increased ectopic MPK-1 activity and that ectopic increase in MPK-1 phosphorylation does not necessarily result in a small oocyte phenotype. Together, these data demonstrate that LIP-1 does not function as an MPK-1 DUSP in the C. elegans germline. Our results caution against overinterpretation of the mechanistic underpinnings of orthologous phenotypes, since they may be a result of independent mechanisms, and provide a framework for characterizing the distinct molecular targets through which LIP-1 may mediate its several germline functions.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Proteínas de Ciclo Celular/metabolismo , Células Germinativas/enzimologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proliferação de Células , Ativação Enzimática , Mutação/genética , Oócitos/citologia , Oócitos/metabolismo , Estágio Paquíteno , Fenótipo , Fosforilação , Proteínas Tirosina Fosfatases/genética , Especificidade por Substrato , Complexo Sinaptonêmico/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...